

### MICROBIOLOGICAL PROFILE



## Masomint<sup>™</sup>

Ready-to-use teat disinfectant with mint fragrance

Edition 3: January 2025

#### **Evans Vanodine**

#### **MASOMINT MICROBIOLOGICAL PROFILE**

#### INTRODUCTION

**MASOMINT** is a ready-to-use teat disinfectant with mint fragrance.

**MASOMINT** is bactericidal and yeasticidal.

**MASOMINT** reduces the risk of infection.

**MASOMINT** is recommended for use as part of a Dairy Hygiene Programme.

| Provides excellent bactericidal and skin conditioning properties            |                               | Contains L-menthol proven to soothe<br>and calm the skin |
|-----------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------|
| High levels of Glycerol which soften the skin to reduce cracks and crevices | Reduces the risk of infection | Highly-visible, long-lasting,<br>dark blue colour        |

#### **MASOMINT - EFFICACY SUMMARY**

**MASOMINT** has been tested and proven to be effective against a range of micro-organisms. European Standard (EN\*) test methods were used to prove efficacy against bacteria and yeast.

The UKAS accredited Microbiology Laboratory at Evans Vanodine International plc. (Testing number 1108) performed tests with bacteria and yeast.

The following tables include information of relevant, applicable test methods, conditions, contact times and organisms.

#### \*EN - European Norm

Published in the UK as BS EN by the British Standards Institution.



# Evans Vanodine MASOMINT MICROBIOLOGICAL PROFILE

#### **ACTIVITY AGAINST BACTERIA**

| BACTERIAL TEST PROFILE |             |            |                           |                  |
|------------------------|-------------|------------|---------------------------|------------------|
| ORGANISMS              | TEST METHOD | TEMP (°C)  | CONTACT TIME<br>(MINUTES) | SOILING<br>LEVEL |
| Escherichia coli       |             |            |                           |                  |
| Staphylococcus aureus  | ]           |            | 1                         | Pre milking      |
| Streptococcus uberis   |             | EN 1656 30 |                           |                  |
| Escherichia coli       |             |            | 5                         | Post milking     |
| Staphylococcus aureus  |             |            |                           |                  |
| Streptococcus uberis   |             |            |                           |                  |

#### **ACTIVITY AGAINST YEAST**

| YEAST TEST PROFILE |             |           |                           |                  |
|--------------------|-------------|-----------|---------------------------|------------------|
| ORGANISMS          | TEST METHOD | TEMP (°C) | CONTACT TIME<br>(MINUTES) | SOILING<br>LEVEL |
| Candida albicans   | EN 1657     | 30        | 1                         | Pre milking      |
|                    |             | 50        | 5                         | Post milking     |

#### MASOMINT MICROBIOLOGICAL PROFILE

#### **VETERINARY DISINFECTANT TEST METHODS**

Veterinary disinfectants can be used in a variety of areas e.g. the breeding, husbandry, production, transport and disposal of all animals except when in the food chain following death and entry to the processing industry.

There are two types of laboratory test methods for livestock disinfectants, suspension and surface methods. As a minimum for general hygiene purposes, products should be effective against bacteria and yeast.

The scope of veterinary EN test methods does not specify application of the product but does include disinfection by immersion and surface disinfection by wiping, spraying, foaming or other means. It does not include aerial disinfection.

The interfering substances used in EN test methods are described as low or high level soiling for disinfectants and as pre and post milking for teat disinfectants in the veterinary test methods. They simulate levels of soiling encountered in practical, real-life situations.

#### **EN TEST METHODS**

| TEST REFERENCE |                                            | TEST TYPE  | ORGANISM    | TEST PASS CRITERIA |
|----------------|--------------------------------------------|------------|-------------|--------------------|
| EN 1656        | For bactericidal activity.                 | Suspension | Bacteria    | ≥5 log reduction   |
| EN 1657        | For fungicidal and/or yeasticidal activity | Suspension | Fungi/Yeast | ≥4 log reduction   |

### MASOMINT MICROBIOLOGICAL PROFILE

#### LOG REDUCTION

Products claiming they will kill 99.9% of bacteria sounds extremely efficient, however it does not prove that a product is an effective disinfectant.

In order to demonstrate effectiveness disinfectants should be tested using European Standard Test Methods. Depending on the applicable area and test used, relevant log reductions are specified and must be achieved to claim effectiveness with a test method. This means a reduction in microbial numbers must be seen when compared to the number of organisms at the start of the test or, for surface tests, to a water control performed at the same time. As the numbers are large it is generally accepted that they are expressed as a logarithm. The reduction can be written as either a log value or a percentage i.e. a 5 log reduction is equivalent to a 99.999% reduction, a 3 log reduction is equivalent to 99.9% reduction.

Bacteria are microscopic free living single celled organisms. A surface contaminated with raw meat for example could have millions of bacteria per square centimetre e.g. a surface with 1,000,000 bacteria treated with a product that kills 99.9% of bacteria would still have 1000 bacteria remaining. If the surface were treated with a product that kills 99.99% of bacteria only 10 bacteria would remain.

Bacterial growth rates vary depending on the surface, type and degree of soiling, temperature and presence of water. For example, E.coli under ideal conditions multiplies every 15 minutes. If conditions are less than ideal (lowering the temperature or drying the surface) the growth rate slows down.

e.g. 1,000 bacteria would increase to 2,000 after 15 minutes, after 30 minutes it would be 4,000 and after 1 hour 16,000 and 256,000 after 2 hours, **10 bacteria would only have multiplied to 2560 in the same 2 hour period.** 

The presence of bacteria does not automatically lead to infection, susceptibility and the infectious dose (number of bacteria required to cause infection) are vitally important. Some bacteria will cause an infection with less than 100 cells ingested or introduced into cuts or wounds. For this reason, it is important to reduce numbers of harmful bacteria to the lowest number possible wherever the risk of infection is high.

| THE FOLLOWING FIGURES APPLY IF THE NUMBER AT THE START POINT WAS 1,000,000 |                  |                                       |  |
|----------------------------------------------------------------------------|------------------|---------------------------------------|--|
| LOG REDUCTION                                                              | NUMBER REMAINING | NUMBER REMAINING PERCENTAGE REDUCTION |  |
| 1                                                                          | 100,000          | 90%                                   |  |
| 2                                                                          | 10,000           | 99%                                   |  |
| 3                                                                          | 1,000            | 99.9%                                 |  |
| 4                                                                          | 100              | 99.99%                                |  |
| 5                                                                          | 10               | 99.999%                               |  |