

MICROBIOLOGICAL PROFILE

Edition 16: April 2025

Evans Vanodine

GPC8 MICROBIOLOGICAL PROFILE

INTRODUCTION

GPC8 is a powerful glutaraldehyde based, general purpose disinfectant.

GPC8 has a broad spectrum of activity. It is bactericidal, fungicidal and virucidal.

GPC8 is UK DEFRA approved and CEFAS listed.

GPC8 can be used in all types of livestock housing and on associated equipment.

GPC8 is designed for use as part of an effective cleaning and disinfection (hygiene) programme.

Effective in the presence of heavy organic soiling and low temperatures

Use after cleaning

Use on feeders and drinkers

Prolonged residual activity

Non-staining and not corrosive to metal

GPC8 - EFFICACY SUMMARY

GPC8 has been tested and proven to be effective against a range of micro-organisms. European Standard (EN – European Norm*) test methods were used to prove efficacy against bacteria, viruses, fungi and yeast.

The UKAS accredited Microbiology Laboratory at Evans Vanodine International plc. (Testing number 1108) performed tests with bacteria, fungi and yeast.

GPC8 has also been tested against Leptospira and viruses at independent expert laboratories using appropriate methods.

GPC8 is approved in the UK by the Department for Environment, Food and Rural Affairs (DEFRA), for disinfection where an approved product is required <u>https://www.gov.uk/guidance/get-your-disinfectant-approved-by-defra</u>. This approval is also mirrored in Northern Ireland and Ireland by DARDNI and DAERA respectively.

The following tables include information of relevant, applicable test methods, conditions, contact times and organisms.

*EN - European Norm

Published in the UK as BS EN by the British Standards Institution.

SUMMARY OF TEST RESULTS AGAINST AVIAN PATHOGENS

BACTERIAL TEST PROFILE					
ORGANISMS	DILUTION	TEST METHOD	TEMP (°C)	CONTACT TIME (MINUTES)	SOILING LEVEL
Enterococcus cecorum	1:800				
Enterococcus faecalis	1:800				High
Escherichia coli	1:200				High
Pasteurella multocida	1:400]			
Proteus hauseri	1:250]	10	30	Low
Salmonella arizonae	1:200	EN 1656			High
Salmonella gallinarum	1:100]			High
Salmonella infantis	1:100]			Low
Salmonella pullorum	1:200]			Lligh
Salmonella typhimurium	1:400				High
Staphylococcus aureus	1:1000				Low
Escherichia coli	1:100				
Proteus hauseri	1:50	EN 16437	10	120	Simulated
Staphylococcus aureus	1:50	1			
Proteus hauseri	1:200	EN 14740	10	70	
Staphylococcus aureus	1:500	EN 14349	10	30	Low

VIRUS TEST PROFILE					
VIRUS	DILUTION	TEST METHOD	TEMP (°C)	CONTACT TIME (MINUTES)	SOILING LEVEL
Avian Adenovirus	1:100	In-house	Room Temp	30	None
Avian influenza virus Taiwan strain H6N1	1:220	la harra	4	30	Organic
Avian influenza virus H5N3	1:220	In-house	4	50	Organic
Avian influenza A1 780/02	1:200	In-house	Room Temp	5	None
Avian influenza reassortant virus H3N2	1:200	In-house	20	10	None
3 Infectious Bronchitis virus	1:100	In-house	Room Temp	30	None
Infectious Bursal disease virus	1:100	EN 14675	20	30	High
Infectious Laryngotracheitis virus	1:400	In-house	Room Temp	30	None
Marek's disease virus	1:200	In-house	10	30	Organic
Newcastle Disease virus strain Montana	1:100	DVG-STAND 07.11.2017	10	30	40% calf serum
Newcastle Disease virus	1:50	DEFRA	4	30	5% Yeast

In-house tests use protocols specific for each virus.

SUMMARY OF TEST RESULTS AGAINST BOVINE PATHOGENS

BACTERIAL TEST PROFILE								
ORGANISMS	DILUTION	TEST METHOD	TEMP (°C)	CONTACT TIME (MINUTES)	SOILING LEVEL			
Escherichia coli	1:200							
Campylobacter jejuni	1:1000]			Lliab			
Corynebacterium pseudotuberculosis	1:100	EN 1656	10	30	High			
Klebsiella pneumoniae	1:200							
Pseudomonas aeruginosa	1:200]			Low			
Staphylococcus aureus	1:1000]			Low			
Escherichia coli	1:100							
Pseudomonas aeruginosa	1:100	EN 16437	10	120	Simulated			
Staphylococcus aureus	1:50]						
Leptospira interrogans	1:200	In-house	Room Temp	2	None			
Pseudomonas aeruginosa	1:200	EN 14740	N 14349 10 30	70	Low			
Staphylococcus aureus	1:500			30				

VIRUS TEST PROFILE					
VIRUS	DILUTION	TEST METHOD	TEMP (°C)	CONTACT TIME (minutes)	SOILING LEVEL
Bovine Viral Diarrhoea virus (BVD)	1:25	EN 14675	10	30	High
Bovine enterovirus	1:100		10	70	Low
Foot and Mouth Disease Virus Type A and Type Asia 1	1:200	EN 14675	10	30	
Foot and Mouth Disease Virus OI British field strain 1860/UK167	1:80	DEFRA	4	30	1% foetal bovine serum

SUMMARY OF TEST RESULTS AGAINST PORCINE PATHOGENS

BACTERIAL TEST PROFILE					
ORGANISMS	DILUTION	TEST METHOD	TEMP (°C)	CONTACT TIME (MINUTES)	SOILING LEVEL
Enterococcus hirae	1:500				
Pseudomonas aeruginosa	1:200	EN 14349	10	30	Low
Staphylococcus aureus	1:500]			
Salmonella enteritidis	1:25	DEFRA	4	30	5% yeast
Bordetella bronchiseptica	1:200				Llink
Enterococcus faecalis	1:800]			High
Enterococcus hirae	1:1000]			Low
Escherichia coli	1:200]			High
Pasteurella multocida	1:400	EN1656	10	10 30	
Pseudomonas aeruginosa	1:200]			Low
Salmonella enteritidis	1:200]			High
Staphylococcus aureus	1:1000]			Low
Streptococcus suis	1:1000]			High
Enterococcus hirae	1:50				
Escherichia coli	1:100		10		Simulated
Pseudomonas aeruginosa	1:100	EN 16437	10	120	
Staphylococcus aureus	1:50				
FIELD ISOLATES					
Actinobacillus pleuropneumoniae (App)	1:100				
Brachyspira hyodysenteriae	1:200		10	70	Llink
Haemophilus parasius (Hps)	1:100	EN 1656	10	30	High
Streptococcus suis	1:800				
Pasteurella multocida	1:200		10	70	
Staphylococcus hyicus	1:100	EN 1656	10	30	Low

US TEST PROFILE					
VIRUS	DILUTION	TEST METHOD	TEMP (°C)	CONTACT TIME (MINUTES)	SOILING LEVEL
PRRS Virus	1:200	In-house	Room Temp	30	None
African Swine Fever virus	1:50	In-house	20	30	Organic
African Swine Fever virus	1:800*	In-house	10	30	0.3% bovin serum
Porcine Circovirus Type 2	1:100*	In-house	10	30	Organic
PED Virus	1:200	In-house	4	60	None
PED Virus	1:200	In-house	25	15	None
TGE Virus	1:200	In-house	10	30	Organic
Classical Swine Fever virus	1:100	In-house	4	30	Organic
Aujesky's virus	1:250	In-house	4	30	Organic
Porcine Influenza A (H1N1)	1:400	EN 14675	10	30	High
	1:100	EN 17122	10	120	Classe
Parvo virus	1:100	EN 17122	20	120	Clean
	1:200	In-house	Room Temp	30	None
Foot and Mouth Disease virus Type A and Type Asia 1	1:200	EN 14675	10	30	Low
Foot and Mouth Disease Virus Ol British field strain 1860/UK167	1:80	DEFRA	4	30	1% foeta bovine seru
Porcine Rotavirus	1:200*	In-house	Room Temp	30	None

*NOTE Results did not meet test specifications due to limitations of each method.

SUMMARY OF TEST RESULTS AGAINST PATHOGENIC FUNGI

FUNGICIDAL TEST PROFILE					
FUNGI	DILUTION	TEST METHOD	TEMP (°C)	CONTACT TIME (MINUTES)	SOILING LEVEL
Acrossillus braziliancia	1:10	EN 1657	10	24 Hours	Loui
Aspergillus brasiliensis	1:50	EN16438	10	24 Hours	Low
	1:200	EN 1657		30	Low
	1:100				High
Candida albicans	1:100	EN 16438	10	120	Low
	1:50	EN 16437		120	Simulated
	1:25	EN 10437		60	Simulated
Fusarium oxysporum f.sp. cubense	1:100	EN 1657	20	30	High

SUMMARY OF TEST RESULTS AGAINST FISH PATHOGENS

BACTERIAL TEST PROFILE					
ORGANISMS	DILUTION	TEST METHOD	TEMP (°C)	CONTACT TIME (MINUTES)	SOILING LEVEL
Aeromonas salmonicida	1:400				
Carnobacterium maltaromaticum	1:800		4	70	Llink
Lactococcus garvieae	1:800	EN 1656	4	30	High
Yersinia ruckeri	1:100				

SUMMARY OF TEST RESULTS AGAINST CANINE PATHOGENS

VIRUS TEST PROFILE					
VIRUS	DILUTION	TEST METHOD	TEMP (°C)	CONTACT TIME (MINUTES)	SOILING LEVEL
Canine Distemper virus	1:150	EN 14675	10	30	Low

SUMMARY OF TEST RESULTS AGAINST HUMAN PATHOGENS

BACTERIAL TEST PROFILE								
ORGANISMS	DILUTION	TEST METHOD	TEMP (°C)	CONTACT TIME (MINUTES)	SOILING LEVEL			
Escherichia coli 0157	1:200				High			
Campylobacter jejuni	1:1000				High			
Pseudomonas aeruginosa	1:200		10	30	Low			
Salmonella enteritidis	1:200							
Salmonella typhimurium	1:400	EN 1656			High			
Shigella sonnei	1:200]						
Staphylococcus aureus	1:1000				Low			
Streptococcus pyogenes	1:800	1			High			
Pseudomonas aeruginosa	1:100	EN 16 477	10	120	Simulated			
Staphylococcus aureus	1:50	EN 16437	10	120				

VIRUS TEST PROFILE					
VIRUS	DILUTION	TEST METHOD	TEMP (°C)	CONTACT TIME (MINUTES)	SOILING LEVEL
Hepatitis B	1:30	In-house	Room	10	None
Hepatitis C	1:30	In-house	Room	10	None
Human Immunodeficiency type 1 (HIV)	1:60	In-house	Room	10	None

SUMMARY OF TEST RESULTS AGAINST MISCELLANEOUS PATHOGENS

BACTERIAL TEST PROFILE					
ORGANISMS	DILUTION	TEST METHOD	TEMP (°C)	CONTACT TIME (MINUTES)	SOILING LEVEL
Streptococcus equi	1:200	EN 1656	10	5	Low

THE EFFECT OF CONTACT TIME AND TEMPERATURE ON BACTERICIDAL ACTIVITY

EN 1656 was carried out with 5 and 30 minute contact times, at a standard 10°C temperature and at 20°C and 30°C to determine the effect on the bactericidal dilution with a range of bacteria.

Tests were repeated with a 1 minute contact time at 30°C against four organisms.

BACTERIA	TEST TEMPERATURE (°C)			
	TIME (MINUTES)	10°C	20°C	30°C
Enterococcus hirae	1	-	-	1:1000
	5	1:1000	1:1000	1:1000
	30	1:1000	1:1000	1:2000
Escherichia coli	5	1:50	1:200	1:400
	30	1:200	1:400	1:400
Proteus hauseri	1	-	-	1:500
	5	Fail 1:250	1:250	1:500
	30	1:250	1:1000	1:1000
	1	-	-	1:50
Pseudomonas aeruginosa	5	Fail 1:10	1:100	1:100
	30	1:50	1:100	1:200
Salmonella enterica	5	1:50	1:200	1:400
	30	1:200	1:400	1:800
Staphylococcus aureus	1	-	-	1:500
	5	1:500	1:1000	1:1000
	30	1:500	1:1000	1:1000

The results indicate that the bactericidal dilution of GPC8 is enhanced by increasing the temperature. This improved activity is greater against some bacteria than against others.

The results also indicate that to obtain the same level of activity with a shorter contact time a higher concentration of GPC8 is required in particular at 10°C and against the Gram negative bacteria *Escherichia coli, Proteus hauseri, Pseudomonas aeruginosa* and *Salmonella enterica.*

GPC8 MICROBIOLOGICAL PROFILE

VETERINARY DISINFECTANT TEST METHODS

Veterinary disinfectants can be used in a variety of areas e.g. the breeding, husbandry, production, transport and disposal of all animals except when in the food chain following death and entry to the processing industry.

There are two types of laboratory test methods for disinfectants i.e. suspension methods and surface methods. Surface methods use different carriers depending on the application area. The inoculum is dried on the surface before testing. As a minimum for general hygiene purposes, products should be effective against bacteria and yeast. There are 3 different claims that can be made when virus tests are used, either for full virucidal activity, limited spectrum virucidal activity or activity against enveloped viruses. It will depend on the viruses tested which claim can be applied.

The scope of veterinary EN test methods does not specify application of the product but does include disinfection by immersion and surface disinfection by wiping, spraying, foaming or other means. It does not include aerial disinfection.

The interfering substances used in EN test methods are described as low or high level soiling for disinfectants and as pre and post milking for teat disinfectants, in veterinary test methods. They simulate levels of soiling encountered in practical, real-life situations.

TEST REFERENCE		TEST TYPE	ORGANISM	TEST PASS CRITERIA
EN 1656	For bactericidal activity.	Suspension	Bacteria	≥5 log reduction
EN 1657	For fungicidal and/or yeasticidal activity.	Suspension	Fungi/Yeast	≥4 log reduction
EN 14349	For bacterial activity on stainless steel carriers.	Surface	Bacteria	≥4 log reduction
EN 14675	For virucidal activity.	Suspension	Virus	≥4 log reduction
EN 16437	For bacterial activity on wood carriers.	Surface	Bacteria	≥4 log reduction
EN 16438	For fungicidal and/or yeasticidal activity on stainless steel carriers.	Surface	Fungi/Yeast	≥3 log reduction
EN 17122	For virucidal activity on stainless steel carriers.	Surface	Virus	≥3 log reduction

EN TEST METHODS

GPC8 MICROBIOLOGICAL PROFILE

LOG REDUCTION

Products claiming they will kill 99.9% of bacteria sounds extremely efficient, however it does not prove that a product is an effective disinfectant.

In order to demonstrate effectiveness disinfectants should be tested using European Standard Test Methods. Depending on the applicable area and test used, relevant log reductions are specified and must be achieved to claim effectiveness with a test method. This means a reduction in microbial numbers must be seen when compared to the number of organisms at the start of the test or, for surface tests, to a water control performed at the same time. As the numbers are large it is generally accepted that they are expressed as a logarithm. The reduction can be written as either a log value or a percentage i.e. a 5 log reduction is equivalent to a 99.999% reduction, a 3 log reduction is equivalent to 99.9% reduction.

Bacteria are microscopic free living single celled organisms. A surface contaminated with raw meat for example could have millions of bacteria per square centimetre e.g. a surface with 1,000,000 bacteria treated with a product that kills 99.9% of bacteria would still have 1000 bacteria remaining. If the surface were treated with a product that kills 99.99% of bacteria only 10 bacteria would remain.

Bacterial growth rates vary depending on the surface, type and degree of soiling, temperature and presence of water. For example, E.coli under ideal conditions multiplies every 15 minutes. If conditions are less than ideal (lowering the temperature or drying the surface) the growth rate slows down.

e.g. 1,000 bacteria would increase to 2,000 after 15 minutes, after 30 minutes it would be 4,000 and after 1 hour 16,000 and 256,000 after 2 hours, **10 bacteria would only have multiplied to 2560 in the same 2 hour period.**

The presence of bacteria does not automatically lead to infection, susceptibility and the infectious dose (number of bacteria required to cause infection) are vitally important. Some bacteria will cause an infection with less than 100 cells ingested or introduced into cuts or wounds. For this reason, it is important to reduce numbers of harmful bacteria to the lowest number possible wherever the risk of infection is high.

THE FOLLOWING FIGURES APPLY IF THE NUMBER AT THE START POINT WAS 1,000,000						
LOG REDUCTION	NUMBER REMAINING	PERCENTAGE REDUCTION				
1	100,000	90%				
2	10,000	99%				
3	1,000	99.9%				
4	100	99.99%				
5	10	99.999%				